94

PHYSICAL REVIEW 149

VOLUME 149, NUMBER 1

Compressibility of Liquid He⁴ as a Function of Pressure^{*}

9 SEPTEMBER 1966

lous

cross section is use $(E-E_{p}),$

$(E_{2})^{-1}\mu(E),$

nit step functions to he electron gas to be ution, it is found that

mperature.

nbination energy sup st weight $\tilde{\epsilon}_p$ and sum

· R ...

stic transitions $c \rightarrow p$. nds from Hinnov and

-*N. 3Ep-2,

eV. States within kT, sidered in the sum over states will be in local the free-electron gas. exchange of energy beectrons. Replacing the ind that

+1).

ith an electron tem

SeV. eV.

imations involved, the hydrogenic model wa that to obtain a more e account of radiativ to bound states as we ates. Superelastic an id levels should also b d that Byron et al. tion heating and ate $\epsilon \gtrsim 1.12$ eV.

ortz, Phys. Rev. Letters

E. R. GRILLY

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico (Received 18 April 1966)

The compressibility, $\beta = -(1/V)(\partial V/\partial P)_T$, of liquid He⁴ was measured from 1 atm to the melting pressure and between 1.6 and 2.5°K. ΔV and ΔP were determined from deflections of the cell walls. The normal decrease of β with increasing P was observed except in an area below the λ line. For an isotherm crossing the λ line, β showed a minimum at $P < P_{\lambda}$ and a peak at P_{λ} . The minimum also occurred between the lowest T_{λ} (1.76°K) and 1.70°K. The variation of β with P near P_{λ} , relative to β at 2.20°K, followed an equation of the form $\beta_T - \beta_{2,2} = a - b \log |P - P_{\lambda}|$, where a and b for $P < P_{\lambda}$ are greater than a and b for $P > P_{\lambda}$. Between the T limits of the λ line, $(\partial \beta / \partial T)_P$ was definitely negative for P just above P_{λ_1} but it approached zero for $P \gg P_{1}$

I. INTRODUCTION

N general, the isothermal compressibility coefficient, $\beta \equiv -(1/V)(\partial V/\partial P)_T$, of a liquid decreases with decreasing temperature and with increasing pressure. The anomalous increase of β with increasing pressure in liquid He⁴ near the λ transition was first indicated by the density measurements of Keesom and Keesom.¹ Their Fig. 3 seems to show $(\partial \rho / \partial P)_T$ at 30 atm rising above the values at 25 and 20 atm in a narrow temperature interval 1.80-1.85°K. However, the authors left the point without comment while they noted "as a remarkable fact that the He II parts of the curves seem to approach at decreasing temperatures to a production of the He I parts. It looks as if there is an intermediary region of increased compressibility, which abruptly ends at the λ curve." On the other hand, no pressure anomaly was shown by the adiabatic compressibility derived from sound-velocity data of Atkins and Stasior.2 Direct measurements of β , i.e., through small ΔP and *V* at constant temperature, were made by Grilly and Mills³ over a short range of pressure and at several temperatures. The values of β peaked at P_{λ} , but the continuity of β was indefinite. However, it was clear that β had an anomalous variation with temperature hear the λ transition for $P > P_{\lambda}$. Then, Lounasmaa⁴ measured β with very high resolution in the immediate vicinity (within 10^{-3} to 10^{-2} atm) of one λ point 2.023°K and 13.04 atm). He obtained a linear variation If β with pressure on each side of P_{λ} and a discontinuity i 10% in β at P_{λ} .

All these measurements left unanswered some questions. What is the nature of the expected minimum in the β versus P curve? Does the abnormal variation of β with temperature near the λ transition revert to Cormalcy at (P,T) far above $(P_{\lambda},T_{\lambda})$? To answer them,

- K. R. Atkins and R. A. Stasior, Can. J. Phys. 31, 1156 (1953). E. R. Grilly and R. L. Mills, Ann. Phys. (N.Y.) 18, 250
- 1962).
- ¹O. V. Lounasmaa, Phys. Rev. 130, 847 (1963).

 β was measured directly as a function of pressure at several constant temperatures.

II. EXPERIMENTAL

A. Method

The present measurements of compressibility in liquid He⁴ were done in a cell designed for general P-V-T work in liquid and solid He⁴ and He³. Essentially, each ΔP and ΔV was measured by the deflection of diaphragms. The cell, shown in Fig. 1, consisted of three diaphragms joined circumferentially and left separated by two gaps, each of which was connected to a capillary tube leading to room temperature. The upper gap acted as the sample chamber, whose volume V_U could be changed at will by the pressure of the liquid in the lower gap. The sample under study was confined to V_U by a valve near the cell. The upper chamber pressure P_U was determined from the deflection of the top diaphragm, while the lower chamber pressure P_L was measured at room temperature through the capillary. At any time, V_U could be determined from P_U and P_L through the formula

$V_{U} = V_{U_0} + (S_U + S_L) P_U - S_L P_L$

where V_{U_0} is the volume of the upper chamber for no deflection of the diaphragms, S_U is the sensitivity of the upper diaphragm in terms of volume change per unit pressure difference, and S_L is the sensitivity of the middle diaphragm. Therefore, the compressibility of

[&]quot;Work performed under the auspices of the U. S. Atomic Faergy Commission.

W. H. Keesom and A. P. Keesom, Physica 1, 128 (1934);